Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros -> cons2(0, n__zeros)
tail1(cons2(X, XS)) -> activate1(XS)
zeros -> n__zeros
activate1(n__zeros) -> zeros
activate1(X) -> X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros -> cons2(0, n__zeros)
tail1(cons2(X, XS)) -> activate1(XS)
zeros -> n__zeros
activate1(n__zeros) -> zeros
activate1(X) -> X
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__zeros) -> ZEROS
TAIL1(cons2(X, XS)) -> ACTIVATE1(XS)
The TRS R consists of the following rules:
zeros -> cons2(0, n__zeros)
tail1(cons2(X, XS)) -> activate1(XS)
zeros -> n__zeros
activate1(n__zeros) -> zeros
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__zeros) -> ZEROS
TAIL1(cons2(X, XS)) -> ACTIVATE1(XS)
The TRS R consists of the following rules:
zeros -> cons2(0, n__zeros)
tail1(cons2(X, XS)) -> activate1(XS)
zeros -> n__zeros
activate1(n__zeros) -> zeros
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 2 less nodes.